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Chapter 1

Introduction

1.1 IAG&C Design Philosophy

This series of reports documents the design, implementation, and testing
of an Integrated Adaptive Guidance and Control (IAG&C) System for the
X-40A Space Maneuvering Vehicle. This project was motivated by the ob-
servation that reconfigurable flight control systems, when used alone, were
not always capable of recovering autonomous vehicles following a control ef-
fector failure, even though it was physically possible to do so. In manually
controlled aircraft, a reconfigurable flight control system can assist pilots in
vehicle recovery when failures or damage change the stability and control
characteristics. A great deal of work has been accomplished in the area of
reconfigurable control systems over the past 30 years [1, 2, 3, 4, 5, 6] and the
work presented here builds upon this technological base. While the objective
of a reconfigurable control system is to minimize the impact of control effec-
tor failures on the handling qualities of the vehicle, one could always allocate
the task of trajectory planning to the highly adaptive human pilot. A human
pilot can detect degradations in flying qualities in spite of the best efforts of
the reconfigurable flight control system (FCS) and still recover the vehicle
by planning and executing a flight profile that does not violate the physical
capabilities of the impaired system.

In an autonomous flight system, the guidance system and trajectory gen-
eration algorithms must fulfill the adaptive role of the pilot in the outer-loop
and trajectory planning tasks. One of the objectives of this program was to
develop an integrated architecture that enabled a guidance system and tra-
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jectory generation algorithm to respond to degradations in closed-inner loop
performance resulting from the inability of a reconfigurable FCS to recover
nominal performance. Another objective was to create an IAG&C system
that could pass a verification and validation process developed by the builder
of the X-40A, namely, Boeing Phantom Works. Finally, the IAG&C system
was to be flight tested using the USAF/General Dynamics Total In-Flight
Simulator (TIFS) aircraft.

In this program, a reconfigurable control law was developed that provided
critical information to the guidance and trajectory reshaping algorithms in
order to enable these outer-loop and planning systems to account for de-
graded inner-loop performance due to control effector failures. The baseline
control law was designed using Dynamic Inversion in an Explicit Model Fol-
lowing framework. The system is designed to track body-axis pitch, roll, and
yaw rate commands. An optimization-based control allocation algorithm is
used to produce control effector deflection commands that do not violate ac-
tuator rate and position limits. The Onboard Aircraft Model (OAM) made
use of multi-dimensional tables to store the force and moment increments
from the aerodynamic database. Model bandwidth attenuation and integra-
tor anti-windup algorithms were used to prevent saturation of the body-axis
pitch, roll, and yaw rate command systems.

A technique called Reference Model Bandwidth Attenuation (RMBA)
was developed that allowed the model following system to account for con-
trol power losses and to communicate degraded closed inner-loop perfor-
mance to the guidance system. RMBA is activated by axis saturation that
results from consuming all available rotational acceleration control power in
the pitch, roll, or yaw axes. The outputs of the dynamic inversion algorithm,
namely, the commanded body angular acceleration vector, serve as the inputs
to a linear programming based control allocator. A method for improving
the performance of the feedback control/control allocation system was de-
veloped that relaxes the typical assumption that the control variable rates
are linear functions of the surface deflections with zero intercepts. This new
formulation allows a linear control allocator to efficiently and accurately de-
termine control effector positions that satisfy moment or angular acceleration
commands when these commands are monotonic and separable functions of
control surface deflection. Axis saturation is detected by the control alloca-
tor that can compute an instantaneous control deficiency. When a control
power deficiency is detected, the bandwidth of the reference model in the ex-
plicit model following system is reduced in order to decrease the magnitude
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of the angular acceleration commands being passed to the control allocator.
Since the angular accelerations are taken to be monotonic functions of con-
trol surface deflections, reducing the magnitude of the angular acceleration
command decreases the magnitude of the surface deflections, thereby driv-
ing them away from saturation. When the closed inner-loop bandwidth is
reduced in this way, the gains in the outer-loop guidance system must also
be modified to preserve acceptable stability margins.

The adaptive guidance system was developed by Barron Associates and
is described in detail in Volume 2 of this report. In essence, the outer-loop
gains are adjusted to preserve frequency separation between the inner and
outer loops. Also described in Volume 2 is the trajectory generation algo-
rithm. The trajectory generator makes use of a database of trajectories that
have been designed off-line for a range of off-nominal conditions. The trajec-
tories are scheduled as a function of states and failure induced constraints.
In summary, the fundamental design philosophy is to preserve a modular
guidance and control architecture by preventing axis saturation when pos-
sible, preserving frequency separation between the inner and outer loops,
and generating trajectories for the failed vehicle that minimize control ef-
fector demands while enabling the vehicle to land without incurring further
damage.

Details of the IAG&C program are provided in this multi-volume set
of technical reports, with the current one being Volume 1. In Volume 2,
the adaptive guidance and trajectory reshaping algorithms are described,
while Volumes 3 and 4 contains details of the Monte-Carlo simulations and
generation of flight-ready code performed by Boeing Phantom Works. Lastly,
Volume 5 discusses the TIFS aircraft, simulation of the X-40A utilizing the
TIFS, and in-flight test results.

Volume 1 is organized as follows: Section 1.2 provides an introduction to
the inner-loop reconfigurable control problem. In Section 2.1, the dynamic
inversion control law will be discussed. Section 2.2 details the control allo-
cation algorithm, Section 2.3 discusses prefilters for model following, while
results are presented in Section 3.1. Conclusions and velocity tracking are
discussed in Sections 4.1 and Appendix A, respectively and references are
also provided.
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1.2 X-40A Background

The X-40A Space Maneuver Vehicle is a technology demonstrator which is
an 80% scale version of the X-37 reusable spaceplane. The X-40A Space
Maneuver Vehicle (SMV) has a fuselage length of 22 feet, a wing span of 12
feet and weighs about 2,865 pounds. This vehicle is used to validate low-
speed handling qualities and demonstrate autonomous approach and landing
capabilities. This uniquely shaped vehicle is an innovative approach to ful-
filling an Air Force need for a new generation of small and reusable, highly
maneuverable space vehicles to perform a variety of tasks such as satellite
deployments, surveillance, and logistics missions.

The control design described in this report is for a modified version of the
X-40A. The baseline X-40A has at its disposal four control surfaces, left and
right flaperons and left and right ruddervators. Unfortunately, these four
control surfaces did not provide the level of control redundancy that would
be required to fully exercise all elements of the IAG&C system. To alleviate
this restriction, two additional control surfaces were augmented to the vehicle
model, namely, a speedbrake and a bodyflap. It is important to note that
these surfaces exist on the full scale X-37 and would be available on the full-
scale re-entry vehicle. In fact, the control increment estimates for the X-40
speedbrake and bodyflap were scaled from the X-37 aerodynamic database
by Boeing, as discussed in Volume 3.. Figure 1.1 shows the original X-40A
and the location of the additional control effectors. Throughout this report,
X-40A will refer to the space maneuvering vehicle with six control surfaces,
unless it is specifically stated that the original X-40A (four control surface
vehicle) is under consideration. In terms of moment generating capability,
the speedbrake and bodyflap essentially produce only pitching moments. Due
to their close proximity to the vehicle center of gravity, the flaperons produce
very little pitching moment. Hence, with the original X-40A, a failure of the
primary pitch control device (ruddervator) would be a catastrophic failure.
In the modified X-40A, the vehicle can recover from ruddervator failures
because of the additional pitching moment redundancy of the speedbrake
and bodyflap.
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Figure 1.1: X-40A.
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Chapter 2

Inner-Loop Reconfigurable
Control Design

2.1 Dynamic Inversion

The goal of dynamic inversion in flight control is to cancel the wing-body-
propulsion forces and moments with control effector forces and moments such
that the vehicle can accurately track some desired commands. Dynamic
inversion control laws [6] require the use of a control mixer or control effector
allocation algorithm when the number of control effectors exceeds the number
of controlled variables, or when actuator rate and position limits must be
taken into account. It is quite common that the desired control variable rate
commands can be achieved in many different ways and so control allocation
algorithms are used to provide unique solutions to such problems [7, 8].

To complete the inner-loop, precompensation blocks are designed to pro-
duce the desired closed-loop dynamics. In this work, an explicit model-
following prefilter scheme is introduced and inner-loop bandwidth is adjusted
by modifying the bandwidth of the explicit model.

For the purpose of demonstration, we develop a dynamic inversion con-
trol law for a lifting body reentry vehicle with six control surfaces. The con-
trol surfaces include two flaperons, two ruddervators, a speedbrake, and a
bodyflap. An outer-loop control system generates body-frame angular veloc-
ity commands (pdes, qdes, rdes), that the inner-loop dynamic inversion control
system attempts to track. The development of the vehicle model for the
angular velocities follows the work of Doman, et. al. [9]. The dynamics of
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the body-frame angular velocity vector for a lifting body can be written as

ω̇ = f(ω,P) + g(P, δ) (2.1)

where ω = [p q r]T , and p, q, and r are the rolling, pitching, and yawing
rates, respectively, P denotes measurable or estimable quantities that influ-
ence the body-frame states, and δ = (δ1, δ2, · · · , δn)T is a vector of control
surface deflections. The vector P contains variables such as angle of attack,
sideslip, Mach number, and vehicle mass properties. The term g(P, δ) in-
cludes the control dependent accelerations, while the term f(ω,P) describes
accelerations that are due to the base-vehicle’s (wing-body-propulsion) aero-
dynamic properties. The moment equations for a lifting body in the body-
frame [10] can be manipulated to form control dependent and control inde-
pendent terms. It is assumed that the mass properties of the vehicle under
consideration are constant, thus, the time derivative of the inertia matrix
can be set to zero, i.e., İ = 0. Then, Equation 2.1 can be written as

ω̇ = I−1(GB(ω,P, δ)− ω × Iω) (2.2)

where

GB(ω,P, δ) = GBAE(ω,P) + Gδ(P, δ) =




L
M
N




BAE

+




L
M
N




δ

(2.3)

In Equations 2.2 and 2.3, I is the inertia matrix and L, M, and N are the
rolling, pitching, and yawing moments. In Equation 2.3, GBAE(ω,P) is the
moment generated by the base aerodynamic system (wing-body-propulsion
system) and Gδ(P, δ) is the sum of moments produced by the control effec-
tors. Therefore,

f(ω,P) = I−1[GBAE(ω,P)− ω × Iω]
g(P, δ) = I−1Gδ(P, δ)

(2.4)

In order to utilize a linear control allocator, it is necessary that the control
dependent portion of the model be linear in the controls. Hence, an affine
approximation is developed such that

Gδ(P, δ) ≈ G̃δ(P)δ + ε(P, δ) (2.5)

The term ε(P, δ) is an intercept term [11] for the body-axis angular accel-
erations which is used to improve the accuracy of linear control allocation
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algorithms. More detail on this term will discussed in subsequent sections.
Using Equations 2.1, 2.4, and 2.5, the model used for the design of the dy-
namic inversion control law becomes

ω̇ = f(ω,P) + I−1G̃δ(P)δ + I−1ε(P, δ) (2.6)

The objective is to find a control law, that provides direct control over ω̇, so
that ω̇ = ω̇des. Hence, the inverse control law must satisfy

ω̇des − f(ω,P)− I−1ε(P, δ) = I−1G̃δ(P)δ (2.7)

Equation 2.7 provides the dynamic inversion control law for the body-frame
angular velocity vector.

2.2 Control Allocation

Since there are more control effectors than controlled variables and the con-
trol effectors are restricted by position and rate limits, a control allocation
algorithm must be used. For the lifting body under consideration, there are
three controlled variables, namely, roll, pitch, and yaw rates, while there
are six control surfaces (left and right flaperons, left and right ruddervators,
speedbrake, and bodyflap). Hence, a control allocation scheme must be used
to insure that Equation 2.7 is satisfied. The control allocation scheme used
in this work draws heavily on the work of Buffington, et. al. [12, 13].

Control allocators are used in conjunction with some type of feedback con-
trol law whose output consists of one or more pseudo-control commands (typ-
ically desired moment or acceleration commands). The number of pseudo-
control commands is always less than or equal to the number of control
effectors. Dynamic inversion control laws and control allocation algorithms
fit together quite naturally since the pseudo-control commands are easily
identifiable. Also, it is quite common that the desired commands can be
achieved in many different ways and so control allocation algorithms are
used to provide unique solutions to such problems.

To begin development of the allocator, consider rewriting Equation 2.7
as

ddes = ω̇des − f(ω,P)− I−1ε(P, δ) = I−1G̃δ(P)δ = Bδ (2.8)
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where ddes are the body-axis accelerations that must be produced by the
control effectors and B is the control effectiveness matrix defined as

B = I−1G̃δ(P) = I−1




∂L
∂δ1

∂L
∂δ2
· · · ∂L

∂δn

∂M
∂δ1

∂M
∂δ2
· · · ∂M

∂δn

∂N
∂δ1

∂N
∂δ2
· · · ∂N

∂δn




(2.9)

The control allocation objective, in the linear case, is to find δ such that

ddes = Bδ (2.10)

subject to rate and position limits on the control effectors. Notice that
Equation 2.10 defines a linear subspace in the (ddes, δ) space, a point which
will be utilized in Section 2.2.2.

Equation 2.10 can be posed as the following optimization problem:

min
δ

JE = min
δ
‖Bδ − ddes‖1 (2.11)

subject to
δ ≤ δ ≤ δ (2.12)

where JE is the performance index for the error minimization problem, δ,
δ are the most restrictive lower and upper limits on the control effectors,
respectively and the 1-norm is selected so that linear programming techniques
can be used to solve the problem [12]. More specifically,

δ = min(δU , δ + δ̇max∆t)

δ = max(δL, δ − δ̇max∆t)
(2.13)

where δL, δU are the lower and upper position limits, δ is the current location
of the control effectors, δ̇max is a vector of rate limits, and ∆t is the timestep
or control update rate.

If sufficient control authority exists such that JE can be made identically
equal to zero, then it may be possible to optimize a sub-objective. This
optimization problem can be posed as follows:

min
δ

JC = min
δ
‖Wδ(δ − δp)‖1 (2.14)
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subject to

Bδ = ddes

δ = min(δU , δ + δ̇max∆t)

δ = max(δL, δ − δ̇max∆t)

(2.15)

where Wδ is a weighting matrix and δp is a preferred set of control effec-
tor deflections. The problem posed in Equation 2.14 is termed the control
minimization problem.

In practice, the two optimization problems given in Equations 2.11 and 2.14
are combined to form what is known as the mixed optimization problem [8].
The mixed optimization problem is defined as

min
δ

JM = min
δ

(‖Bδ − ddes‖1 + λ ‖Wδ(δ − δp)‖1

)
(2.16)

where the parameter λ is used to weight the error and control minimization
problems. For this work, it was determined that λ = 0.01 provided good
error minimization while still driving the control effectors to the preferred
values when sufficient control authority existed. The advantage of the mixed
optimization problem is that it can often be solved faster and with better
numerical properties as compared to sequentially solving the error and control
minimization problems [8].

2.2.1 Control Allocation Preference Vector and Effec-
tor Failures

As specified in Equation 2.16, a preference vector, δp, must be selected.
One difficulty with the linear programming framework for solving the control
allocation problem is that no closed-form model of the control allocator exists.
This causes problems when performing linear stability analysis as there is no
way of representing the input/output relationship of the allocation algorithm.
Fortunately, when sufficient control authority exists, the allocation algorithm
can attempt to minimize the difference between the control deflections and a
preferred set of control deflections. One obvious choice for preference vector
is the pseudo-inverse solution or minimum 2-norm solution. In this case,
when sufficient control authority exists, the control allocation algorithm will
drive the surfaces to the pseudo-inverse solution. Hence, in a robustness
analysis, the control allocator can be replaced by the closed-form solution
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(assuming sufficient control authority exists). The pseudo-inverse solution is
the minimum two-norm solution to the control allocation problem and can
be formulated as follows:

min
δ

1

2
(δ + c)TW(δ + c) (2.17)

subject to
Bδ = ddes (2.18)

where W is a weighting matrix and c is an offset vector. To solve this
problem, first find the Hamiltonian (H) such that

H =
1

2
δTWδ +

1

2
cTWδ +

1

2
δTWc +

1

2
cTWc + ξ(Bδ − ddes) (2.19)

where ξ ∈ Rn is an as yet undetermined vector of Lagrange multipliers.
Taking the partial derivatives of H with respect to δ and ξ, setting these
expressions equal to zero, and rearranging, gives

∂H

∂δ
= Wδ +

1

2
(cTW)

T
+

1

2
Wc + (ξB)T = 0

=⇒ Wδ = −Wc−BTξT
(2.20)

and

∂H

∂ξ
= Bδ − ddes = 0

=⇒ Bδ = ddes

=⇒ BW−1Wδ = ddes

(2.21)

Substituting Equation 2.20 into Equation 2.21 yields

BW−1[−Wc−BT ξT ] = ddes (2.22)

Solving for ξT in Equation 2.22 yields

ξT = −(BW−1BT )−1[ddes + Bc] (2.23)

Substituting Equation 2.23 into Equation 2.20 produces

Wδ = −Wc + BT (BW−1BT )−1[ddes + Bc] (2.24)
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Simplifying Equation 2.24 gives the desired result

δ = δp = −c + W−1BT (BW−1BT )−1[ddes + Bc] (2.25)

Equation 2.25 gives the pseudo-inverse solution. It should be noted that if
an effector is offset, two items must be taken into account, position offset
(−c) and the moments generated by the offset (Bc). For the specific usage
of the pseudo-inverse control allocation solution, the weighting matrix was
selected to be diagonal, such that,

W = diag [WδRF
WδLF

WδRR
WδLR

WδSB
WδBF

] (2.26)

where ’diag’ represents a diagonal matrix with the entries along the main
diagonal being the weights associated with each control effector.

This control allocation formulation allows one to simulate a control ef-
fector failure rather easily. A failure is introduced by simply setting the
lower and upper positions limits on the effected control surface equal to each
other. For a failed control surface, its effects must also be accounted for in
the pseudo-inverse preference vector, which requires two modifications. First,
the location of the failure must be inserted into the offset vector. Here, the
appropriate component of c is set to the negative of the failure position. Sec-
ond, the appropriate entry in the weighting matrix, W, must be increased.
Nominally, the entries in W are one and an increase in the value will place
more penalty on usage of that particular surface.

2.2.2 Improving Control Allocation Accuracy

The primary function of the control allocation algorithm is, given the current
control effectiveness matrix (B) and a vector of desired pseudo-control com-
mands (ddes), find the control effector settings δ that will produce the desired
pseudo-control commands. A method is presented that improves the accu-
racy of linear control allocators when the moments produced by the effectors
are monotonic and separable nonlinear functions of effector position [11].
Hence, it is desired to improve the accuracy of conventional allocation al-
gorithms. The modification developed in the upcoming paragraphs will be
described by use of a one-dimensional example, although this theory is di-
rectly applicable to multiple dimensions. It is important to note that the
improvement in allocation algorithms is measured in terms of the accuracy
of the calculation of δ.
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Most control allocation algorithms use the assumption that a linear rela-
tionship exists between the pseudo-control-commands (ddes) and the control
effector displacements (δ), i.e.,

ddes = Bδ (2.27)

where B is the control effectiveness matrix which, in terms of Equation A.3,
is defined as

B = I−1G̃δ(P) (2.28)

This is equivalent to a linear subspace containing the zero element. In the
one-dimensional case, Equation 2.27 describes a line passing through the
origin in the ddes, δ plane. In reality, the forces and moments produced by
aerodynamic control surfaces are often nonlinear functions of control surface
deflection. This phenomenon limits the accuracy of linear control allocation
algorithms since most currently available approaches are based on the as-
sumption that the control variable rates are linear functions of the surface
deflections and that the control variable rate increments are not produced for
zero deflections. The errors introduced by this assumption are currently mit-
igated by the robustness resulting from feedback control laws. A method for
improving the performance of the feedback control/control allocation system,
that directly attacks the inaccuracies introduced by the linear assumptions,
was developed for this program.

To begin, consider the one-dimensional example shown in Figure 2.1.
Here, a typical moment-deflection curve is shown with the dashed curve.
Control effector position is indicated on the horizontal-axis, and moment pro-
duced by the effector is indicated on the vertical-axis. At time tk, the control
effector is currently at δk and is producing a moment given by gδ(Po, δk). At
time tk+1, assume that the desired moment is gδ(Po, δk+1) as shown in Fig-
ure 2.1. In order to produce the desired moment, the control effector must be
in the position given by δdesired

k+1 . This value is obtained by drawing a horizon-
tal line from gδ(Po, δk+1) to the moment curve (dashed curve), then dropping
a vertical line to the δ axis. If the moment-deflection model used by the al-
location algorithm accurately modelled the moment-deflection relationship,
then it would ideally calculate δdesired

k+1 as the required control effector setting
at time tk+1. Unfortunately, the only information that the linear control allo-
cation algorithm has in regards to the moment curve is a slope (global slope
in this example). If a horizontal line is drawn from gδ(Po, δk+1) to the global
slope line and a vertical line is drawn from this intersection to the δ axis, it is
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Figure 2.1: Effects of Global Slope Model on Control Allocation Algorithm.

found that the linear control allocation algorithm will compute δglobal
k+1 as the

required control effector setting. Thus, it is easily seen that there can be a
large discrepancy between the desired (perfect knowledge of control effective-
ness) and actual (local slope knowledge of control effectiveness). It should
be pointed out that nonlinear control allocation algorithms can be used to
precisely compute δk+1, however, it is our experience that they cannot be
utilized in practice since they cannot complete the required computations in
the available amount of time [14]. The computational restrictions of current
flight computers have forced the use of linear control allocation algorithms.

In practice, the pseudo-controls are nonlinear functions of the surface
deflections as well as other parameters (P) that typically include angle-of-
attack, sideslip, and Mach number. Therefore, the pseudo-controls can be
represented by

ddes = g(P, δ) (2.29)

where g(P, δ) is some nonlinear function of parameters and controls. At any
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given flight condition and deflection, one could find a B for which Bδ =
g(P, δ); however, the individual control effectiveness parameters (slopes)
would be inaccurate.

An improvement to the accuracy of state-of-the-art control allocators,
while not violating the linear assumptions, can be obtained by including
an intercept term. This intercept term [11], ε(P, δ), is used to adjust the
pseudo-control commands. In other words, we make use of an approximation
for g(P, δ) of the form

ddes = g(P, δ) = Bδ + I−1ε(P, δ) (2.30)

Then, a new pseudo-control command d′des is formed such that

d′des = ddes − I−1ε(P, δ) = Bδ (2.31)

On-line, the intercept term can be computed using the following:

I−1ε(P, δ) = I−1




L
M
N




δ

−Bδ (2.32)

Figure 2.2 shows a block diagram displaying the dynamic inversion control
law, control allocator, plant, and intercept correction term.

In order to describe the effects of ε(P, δ) on the calculation of δk+1, con-
sider another one-dimensional example. Shown in Figure 2.3 is a moment
curve (dashed curve) and two current operating conditions, δ1 and δ2. Con-
trary to the case displayed in Figure 2.1, in which a global slope approxima-
tion was used, linear moment models (local slopes) are used in this case. It
can also be seen that, given the operating conditions, these local slope lines
intersect the gδ(Po, δ) axis at nonzero locations. These nonzero locations are
the intercept correction terms, ε1(Po, δ1) and ε2(Po, δ2).

Having illustrated ε(Po, δ), its impact on the control allocation algorithm
will now be formulated. Figure 2.4 shows the effect of ε(Po, δ) on the calcula-
tion of δk+1. Shown in Figure 2.4 is again a one-dimensional representation of
a moment curve along with a current operating condition given by δk. Also
shown are locally linear (accurate control effectiveness) and global (inaccu-
rate control effectiveness) slope models at the current operating condition,
and the nonzero intercept, ε1(Po, δk), for the local slope. At time tk, the mo-
ment gδ(Po, δk) is being produced. Assume, at time tk+1, the desired moment
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Figure 2.2: Inner-Loop Dynamic Inversion with Intercept Correction.
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to be produced is gδ(Po, δk+1). Drawing a horizontal line from gδ(Po, δk+1)
through the two approximate slopes and the moment curve then dropping
vertical lines to the δ axis results in three points. First is the correct value of
δk+1. If the control effector were at this location, the exact desired moment,
gδ(Po, δk+1), would be produced. With the local with intercept and global
slope approximations, the computed value of δk+1 is different than the correct
value. However, it is easily seen that utilizing the local slope with intercept
results in a better approximation for δk+1.

The same type of behavior is displayed when considering using the local
slope with and without intercept correction. In this case, both of the con-
trol effectiveness parameters are accurate. Figure 2.5 displays this situation.
Once again, the one-dimensional moment curve is displayed, the current op-
erating condition is given by δk, and there are now two linear control moment
models with slopes equal to the local slope. The first linear control model has
a zero gδ(Po, δ) intercept and represents a global slope model that is based
on the local slope of the actual moment-deflection curve. In this case, the
control effectiveness is correct (local slope), however, the additional inter-
cept information is not used. The second linear control model has a nonzero
gδ(Po, δ) intercept and the control effectiveness is correct (local slope). Again,
of interest here is the effect of ε1(Po, δk) on the calculation of δk+1. At time
tk+1, assume that the desired moment to be produced is gδ(Po, δk+1). Using
the same logic as in Figure 2.4, it can be seen that the accuracy of the cal-
culation of δk+1 is improved when the local slope with intercept is used as
compared to the global approximation to the local slope (local slope with no
intercept).

One last point to consider in the control allocation paradigm is the po-
tential for the existence of slope reversals in the moment-deflection curve
data. On the X-40A, slope reversals sometimes exist near the maximum or
minimum values of control surface deflection. Figure 2.6 shows the scenario
in which the moment curve is non-monotonic. A problem can arise when
the actuator moves into the non-monotonic region because the sign of the
control effectiveness parameter changes. Thus, when a smaller moment is
commanded, the effector will actually move towards the upper limit δmax.
Actually, the desired response is for the effector to move “over-the-hump”
in the moment curve back to a region where δ < δpeak. Without proper
precautions, these slope reversals can cause an effector to be confined to
a region given by ([δpeak, δmax]). For linear control allocation algorithms,
the non-monotonic region can be clipped to ensure that the moment curve is
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Figure 2.3: Moment Curve With Intercept Correction.

monotonic throughout the control space, as shown in Figure 2.7. In this way,
the problems encountered with slope reversals are eliminated. The clipping
is achieved by forcing the moment-deflection relationship to be a horizontal
line once the non-monotonic region is reached. Hence, further deflection of
the control effector produces no change in moment, with respect to the con-
trol allocation algorithm. The actual aerodynamic data used in the dynamic
inversion control law is not modified in this way, only the data used to de-
termine the effectiveness of the control effector (entries in the B matrix). It
is also important to point out that the clipping is only performed for slope
reversals near the upper or lower bounds of the control effector. If a slope
reversal occurs at other locations, the data is not modified.

18



Figure 2.4: Effect of Intercept Correction on Calculation of δ.
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Figure 2.5: Effect of Intercept Correction on Calculation of δ.
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Figure 2.6: Non-Monotonic Moment Curve With Intercept Correction.
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Figure 2.7: Clipping of Non-Monotonic Moment Curve.
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2.3 Explicit Model Following

The inner-loop flight control system was designed so that the closed-inner-
loop system would exhibit a decoupled first order response to body-axis an-
gular rate commands. An explicit model following scheme was used to shape
the closed-inner-loop response and to compensate for imperfections in the
dynamic inversion control law. Explicit models of the desired roll, pitch and
yaw dynamics were captured in the following framework:

ωm(s)

ωcmd(s)
=

Kbw

s + Kbw

(2.33)

where ωm denotes either the desired roll, pitch, or yaw rate response of the
explicit model and ωcmd denotes the angular velocity command from the guid-
ance and control interface. The term Kbw defines the nominal bandwidth of
the desired dynamics. Figure 2.8 shows a block diagram of a single chan-
nel of an explicit model following structure that motivated the design of the
system implemented in this work. Practical considerations preventing the
direct implementation of this design include the requirement of discrete-time
operation, axis saturation, and sensor noise. Nevertheless it is a useful tool
to establish the basic design of the model following system. The system is
designed to provide perfect tracking of the reference model when the dynamic
inversion is perfect. Since this is never the case in practice, error compen-
sation elements are used to mitigate the effects of inversion error. If the
inversion is perfect, then the controlled element from the point of view of the
explicit model following structure is a simple integrator. From block diagram
algebra, one can see that if the controlled element is a simple integrator, the
ω(s)/ωm(s) transfer function is given by:

ω(s)

ωm(s)
=

(KD + KFF )s2 + KP s + KI

(KD + 1) s2 + KP s + KI

(2.34)

which, when KFF = 1, results in a double stable pole-zero cancellation with
appropriate choices of KP , KI , and KD. Then, it is easily seen that

ω(s)

ωcmd(s)
=

Kbw

s + Kbw

(2.35)

and perfect model following is achieved.
When the inversion is not perfect, the PID network attempts to drive the

reference model tracking error to zero. Table 2.1 shows the gains for each
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channel of the explicit model following system used in the TIFS/X-40A flight
tests. These gains were selected to provide acceptable tracking performance
for pulse train commands in all channels.

Since the control system must operate in discrete time, z-transform rep-
resentations of continuous time elements were used. Tustin transformations
were used to convert continuous time elements into discrete time elements.
The discrete time elements are shown in Figure 2.9. Performing a Tustin
transformation on the reference model results in:

ωm(s)

ωcmd(s)
=

Kbw

s + Kbw

⇒ ωm(z)

ωcmd(z)
=

KbwT (z − 1)

(KbwT + 2)z + (KbwT − 2)

(2.36)

The “derivative” channel makes use of a discrete time representation of a first
order high-pass filter with a 20 rad/sec break frequency to avoid amplification
of high frequency noise, i.e.,

D(s)

e(s)
=

20KDs

s + 20

⇒ D(z)

e(z)
=

16.67KD(z − 1)

z − .6667

(2.37)

The integrator channel provides for windup protection and uses a Tustin
transformation to convert a continuous time integrator to a discrete time
representation, i.e.,

I(s) =
KI

s
(e(s)− IAW (s))

⇒ I(z) =
T (z + 1)

2(z − 1)
KI(e(z)− IAW (z))

(2.38)

The anti-windup signal IAW is used to prevent the integrator from compen-
sating for steady-state errors that are the result of axis saturation. Details
are given in the following section.

2.3.1 Integrator Anti-Windup and Reference Model
Bandwidth Attenuation

Control effector saturation results when one or more control surfaces is mov-
ing at its rate limit or lies on a position limit. Axis saturation occurs when
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Figure 2.8: Block Diagram of Single Channel of Conceptual Explicit Model
Following Control System.

Roll Pitch Yaw
Kbwp = 5 Kbwq = 3 Kbwr = 5
KPp = 7 KPq = 10 KPr = 7
KIp = 20 KIq = 10 KIr = 20
KDp = .1 KDq = .1 KDr = .1
KFFp = 1 KFFq = 1 KFFr = 1

Table 2.1: Control system parameters for explicit model following control
system.
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Figure 2.9: Block Diagram of Single Channel of Discrete Explicit Model
Following Control System with Integrator Anti-Windup Protection.
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Figure 2.10: Block Diagram of Explicit Model Following Prefilter Integrator
Anti-Windup Compensation.

control power has been depleted in one or more axes. For this program,
control effector saturation is a necessary, but not sufficient, condition for the
occurrence of axis saturation. Axis saturation can be detected through an
analysis of the control allocation inputs and outputs. If Bδcmd − ddes 6= 0
then axis saturation has occurred. In order to prevent the integrator in the
explicit model following prefilter from attempting to cancel tracking errors
caused by axis saturation, an integrator anti-windup law is used to reduce
the magnitude of input to the integrator. The integrator anti-windup vector
used in this design is given by:

IAW = KAW (Bδcmd − ddes) (2.39)

where KAW is a gain. The block diagram of the explicit model following
prefilter integrator antiwindup scheme is shown in Figure 2.10.

The integrator antiwindup compensation scheme operates on the differ-
ence between the pseudo control command (angular acceleration vector com-
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mand), ddes, and the output of the control effectiveness model used by the
control allocator, Bδ. If no axes are saturated, then Bδ − ddes = 0 and
the control system operates normally. When Bδ − ddes 6= 0, at least one
axis is saturated and the state of the prefilter integrators are reduced by the
anti-windup signals.

When an axis saturates, that is, when at least one component of Bδcmd−
ddes 6= 0, the inner-loop control system’s performance is degraded and most
likely will not be able to track the nominal commands. One way of con-
veying this information to an outer-loop guidance system is by way of inner-
loop bandwidth. Nominally, the inner-loop bandwidth is set to Kbw, however,
when axis saturation occurs, this bandwidth should be reduced to avoid over-
driving the actuators. Figure 2.11 shows the scheme used to reduce the band-
width (Kbw) of the explicit models whenever axis saturation occurs. Take,
for example, the roll (P) channel shown in Figure 2.11. If (BP δ−ddesP

) = 0,
then the roll loop continues to operate at its nominal bandwidth. Here, BP is
the row of the B matrix corresponding to the roll axis and ddesP

is the body-
axis roll acceleration that is desired from the control effectors. For situations
where (Bδ−ddes) 6= 0, a method was devised to decrease the bandwidth de-
pending on the magnitude of the difference between Biδ and ddesi

, i = 1, 2, 3.
The saturation blocks restrict the inputs to the gain blocks to be between
0 and 1, inclusive. Using the bandwidth attenuation logic of Figure 2.11, a
large error would result in a small bandwidth (minimum bandwidth is 0.5
rad/sec for all three axes). Reducing the bandwidth after sensing saturation
of one or more axes has the effect of reducing the commands to the control
effectors thereby reducing the tendency to saturate.

The inner-loop control system is shown in Figure 2.12. This figure dis-
plays the prefilters, integrator antiwindup protections, dynamic inversion,
control allocation, the plant, and the inter-connections of all these compo-
nents. This is the complete IAG&C inner-loop control system for the X-40A.
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Figure 2.11: Inner-Loop Bandwidth Modification Scheme.
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Figure 2.12: Inner-Loop Control System.
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Chapter 3

Results

3.1 Simulation

A six degree-of-freedom simulation was developed to test the algorithms and
concepts developed in this work. The vehicle was commanded to follow a
nominal trajectory from the reentry point to the touchdown point.

A set of five representative simulation runs will be shown here. These
include a nominal case and four failure cases. The failure cases investigated
include a right flaperon locked at 15◦, a bodyflap locked at 5◦, and a combi-
nation failure consisting of the left and right ruddervators locked at 0◦. Each
of these cases provide unique information that will be discussed in the next
sections.

For each failure case, the results consist of the following items:

1. Command and Actual Roll, Pitch, and Yaw Rates from Simulation

Displays roll, pitch, and yaw rate commands and the actual roll, pitch,
and yaw rates produced by the vehicle. Shows the tracking performance
of the inner-loop.

2. Actual and Ideal Roll, Pitch, and Yaw Rates from Simulation

Shows the actual roll, pitch, and yaw rates produced by the vehicle and
the roll, pitch, and yaw rates produced by an ideal representation of
the inner-loop (first-order transfer function). Note that the roll, pitch,
and yaw rate simulation commands drive both the actual rates and the
ideal rates responses. Displays the performance of the control allocator
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and dynamic inversion since if these are perfect, then the inner-loop
would be equivalent to a first-order transfer function. Small differences
in these traces can be attributed to errors produced by the control allo-
cation algorithm. Errors cannot be attributed to the dynamic inversion
control law during simulation since the model used by the dynamic in-
version controller is the truth model and no disturbances are present.

3. Control Effector Deflections from Simulation

4. Inner-Loop Bandwidth (if applicable) from Simulation

Inner-loop bandwidth is modified when one or more axes saturate. For
some of the failure cases investigated in this report, no axes saturate
and it is therefore not necessary to modify the inner-loop bandwidth.
When inner-loop bandwidth is altered, this is an indication that all
control power has been expended in one or more axes.

5. Altitude versus Downrange from Simulation

6. Altitude, Crossrange, and Downrange from Simulation

7. Actual and Ideal Roll, Pitch, and Yaw Rates (if applicable) from Flight
Test Data

Shows the actual roll, pitch, and yaw rates produced by the vehicle
during flight and the roll, pitch, and yaw rates produced by an ideal
representation of the inner-loop (first-order transfer function). Note
that the roll, pitch, and yaw rate flight commands drive both the actual
rates and the ideal rates responses. Displays the performance of the
control allocator and dynamic inversion since if these are perfect, then
the inner-loop would be equivalent to a first-order transfer function.
Small differences in these traces can be attributed to errors produced by
the control allocation algorithm and/or the dynamic inversion control
law. In flight testing, discrepancies can exist between the model used
for dynamic inversion and the actual vehicle and numerous sources of
disturbances can exist that contribute to differences between the actual
and ideal body rates.

8. Altitude vs. Downrange - (if applicable) from Flight Test Data

The data from simulation was created using batch runs of a non-real-time
simulation of the X-40A. The flight test data utilizes raw information from
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Figure 3.1: Location and Generation of Command, Actual, and Ideal Roll,
Pitch, and Yaw Rates from Simulation.

the actual flight tests. Figure 3.1 shows the location and generation of the
command, actual, and ideal body axis rates from the simulation. The flight
test data was recorded, however, the ideal roll, pitch, and yaw rates for the
flight tests were created by passing the recorded roll, pitch, and yaw rate
commands through first-order lag transfer functions.

The commanded and actual body-axis rate plot shows the tracking per-
formance of the inner-loop control system. The commanded body-axis rates
are generated by the trajectory/guidance loops. It is desired that the inner-
loop track the commanded body-axis rates, hence, a measure of performance
is how well the actual rates match the commanded rates. The ideal roll,
pitch, and yaw rates correspond to an ideal inner-loop. As was shown in
Equation 2.35, the ideal inner-loop looks like a first-order system, with band-
widths of 5 rad

sec
for the roll and yaw channels and 3 rad

sec
for the pitch channel.

Hence, to test performance of the inner-loop, the commanded roll, pitch, and
yaw rates can be filtered by 5

s+5
or 3

s+3
(depending on the channel of inter-
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est) and the output of this filter is what is termed the ideal body-axis rates.
Comparing the ideal rates with the actual rates provides a measure of the
performance of the dynamic inversion and control allocation algorithms. Of
course, this is only valid when the commands are feasible. Another plot of in-
terest is the inner-loop bandwidth. Recall, that if one or more axes becomes
saturated, the inner-loop bandwidth is adjusted. This plot will show the
bandwidth that is passed to the guidance loops. The remaining plots show
the trajectory followed and the control effector deflections. Not all plots are
applicable to all failure cases investigated, so only those which apply will be
displayed.

In terms of flight test data, plots of altitude vs. downrange (flight) and
flight actual and flight ideal body-axis rates will be shown. In this case, the
flight actual body-axis rates are those from the simulation onboard the TIFS
aircraft during an approach and landing flight. Here, the onboard simulation
is driven by real-world measurements, winds, turbulence, etc. and provides
a more realistic result as compared to the desktop simulation studies. The
flight ideal body-axis rates are generated using the body-axis rate commands
from the onboard simulation and passing these through first-order filters of
the form 5

s+5
for the roll and yaw channels and 3

s+3
for the pitch channel. Once

again, the body-axis rate commands are from the flight data. It is important
to make sure that the inner-loop is behaving as desired, hence, the metric in
this case is that the flight actual body-axis rates behave similar to the flight
ideal body-axis rates. Another metric is the altitude vs. downrange (flight)
plots. Here, a quick glance will suffice to validate that the system is behaving
as desired.

Another important point to note is that the body-axis rates from the
desktop simulation do not equal the body-axis rates from the flight tests. In
the flight tests, eight parameters were selected from the TIFS to be used by
the X-40A flight control system [see Volume 5]:

1. Three earth referenced velocity components

2. Three earth referenced positions

3. Heading

4. Altitude

Since only these parameters are used by the X-40A model, they are the
only quantities that are matched by the TIFS. Mismatches in other quan-
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tities (roll, pitch, and yaw rates) have minimal impact on the simulation.
Hence, one would not expect the desktop simulation and TIFS flight body-
axis rates to compare favorably. The correct comparison is the one shown
in the plots, that is, separately comparing actual and ideal body-axis rates
from the simulation and from the flight tests. Likewise, a comparison between
the simulated altitude profile and the flight tested altitude profile cannot be
made. Since the TIFS is not capable of matching the drag characteristics of
the X-40A, it was necessary to scale the altitude and altitude rates to 30%
of the X-40A model (see Volume 5). Hence, even though the altitude profiles
should look similar, careful inspection will show that the precise values are
not equal, which is to be expected. More information on the model following
and vertical motion scaling can be found in Volume 5.

3.1.1 Nominal Results

The results from a nominal run of the simulation will be presented. In this
case, all control surfaces are operating normally and the nominal flight path
is followed. The first two plots, Figures 3.2 and 3.3 show the roll, pitch, and
yaw rates. In Figure 3.2, the commanded and actual rates are displayed and
the tracking performance is acceptable. Figure 3.3 shows the actual and ideal
body-axis rates. Here, it is easily seen that the inner-loop response appears
to track the response of the ideal first-order lag as the traces in these plots
are very similar.

Control deflections, from the simulation, are shown in Figures 3.4 and 3.5.
Figures 3.6 and 3.7 display the altitude, crossrange, and downrange from the
simulation. Performance is acceptable as the nominal flight path is well
behaved and the deviation of crossrange from zero is minimal.

The point of showing nominal runs is so that a comparison can be made
between these plots and the results of simulation runs involving failure cases.
Thus, a nominal set of conditions (flight path, control deflections, body-axis
rates) have been defined.

The last two figures in this section display the nominal flight tests results
from the TIFS aircraft. Figures 3.8 and 3.9 display the altitude vs. down-
range and actual and ideal body-axis rates from a flight test with no failures.
Clearly, the altitude profile behaves as expected and the flight actual body-
axis rates are nearly identical to the flight ideal body-axis rates. Hence, it
is evident that the inner-loop, during this particular flight test, was working
properly.
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Figure 3.2: Command and actual body-axis rates - Simulation - nominal.
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Figure 3.3: Actual and ideal body-axis rates - Simulation - nominal.

37



Figure 3.4: Control Deflections - Simulation - nominal.

38



Figure 3.5: Control Deflections - Simulation - nominal.
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Figure 3.6: Altitude, Crossrange, Downrange - Simulation - nominal.

40



Figure 3.7: Altitude vs. Downrange - Simulation - nominal.
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Figure 3.8: Altitude vs. Downrange - Flight Data - nominal.
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Figure 3.9: Actual and ideal body-axis rates - Flight Data - nominal.
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3.1.2 Right Flaperon Failure Results

In this section, results obtained from simulating a right flaperon failure at 15◦

will be discussed. This failure results in a large unbalanced rolling moment
if no corrective action is taken (and some unbalanced yawing moment). One
way to overcome these adverse moments is to move the left flaperon to 15◦

and use the ruddervators (and bodyflap and speedbrake to a lesser extent)
to control the pitching moment. This is exactly how the IAG&C controller
automatically re-mixes the control effectors after the failure. Without an
onboard reconfigurable inner-loop, the failed right flaperon causes and un-
controllable rolling moment which is fatal to the vehicle. To illustrate these
points, the batch simulation was performed twice resulting in two sets of
plots. The first set is with the IAG&C reconfigurable inner-loop controller.
The second set is with a non-reconfigurable controller. This will ultimately
show some of the benefits of reconfigurable inner-loop control. Note that this
failure was not flight tested and therefore no flight data will be shown.

Right Flaperon Failure Results: IAG&C Controller

Recall that a right flaperon failure at 15◦ is simulated in this run. Figures 3.10
and 3.11 show the body-axis rates for this simulation run. Here, it can be
seen that the actual rates track the commands and that the inner-loop control
system does behave like a decoupled system of first-order lags.

Control deflections are shown in Figures 3.12 and 3.13. It can be seen
that about 41 sec. into the run, a right flaperon failure at 15◦ occurs. As
was stated earlier, this failure causes an adverse rolling moment, which the
control allocator overcomes by moving the left flaperon to 15◦. Other than a
short transient period, the reconfigurable controller is capable of recovering
from this type of failure, as can be seen in the altitude, crossrange, and
downrange plots shown in Figure 3.14 and 3.15. The altitude vs. downrange
plot is nearly the same as the nominal (non-failed) case, while the crossrange
error is minimal as the deviation is less than 0.5 ft from zero.

Figure 3.16 shows the inner-loop bandwidth. Clearly, the bandwidths
of each axis are constant at the nominal values; therefore, none of the axes
become saturated as a result of this failure.
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Figure 3.10: Command and actual body-axis rates - Right Flaperon = 15◦,
IAG&C controller - Simulation.
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Figure 3.11: Actual and ideal body-axis rates - Right Flaperon = 15◦, IAG&C
controller - Simulation.
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Figure 3.12: Control Deflections - Right Flaperon = 15◦, IAG&C controller
- Simulation.
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Figure 3.13: Control Deflections - Right Flaperon = 15◦, IAG&C controller
- Simulation.
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Figure 3.14: Altitude, Crossrange, Downrange - Right Flaperon = 15◦,
IAG&C controller - Simulation.
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Figure 3.15: Altitude vs. Downrange - Right Flaperon = 15◦, IAG&C con-
troller - Simulation.
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Figure 3.16: Bandwidth - Right Flaperon = 15◦, IAG&C controller - Simu-
lation.
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Figure 3.17: Command and actual body-axis rates - Right Flaperon = 15◦,
Non-reconfigurable controller - Simulation.

Right Flaperon Failure Results: Nominal Controller

Now, the nominal (X-40A baseline non-reconfigurable controller used in the
original 8 drop tests of the vehicle [15]) controller is implemented in the
simulation. Once again, the right flaperon failure causes an undesired rolling
moment; in this case, without reconfiguration capabilities, the system cannot
recover from the failure, as can be seen in the body-axis rate plot shown in
Figure 3.17. Clearly, the body-axis rates are going unstable and do not
resemble the nominal (unfailed) system behavior.

The control deflections are shown in Figures 3.18 and 3.19. It’s obvi-
ous that some of the available surfaces become saturated and there is not
sufficient control authority to follow the nominal flight path.

These same types of issues can be seen in the altitude, crossrange, and
downrange plots. Figures 3.20 and 3.21 show this data. Clearly, the cross-
range has large deviations from zero and the altitude vs. downrange plot is
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Figure 3.18: Control Deflections - Right Flaperon = 15◦, Non-reconfigurable
controller - Simulation.
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Figure 3.19: Control Deflections - Right Flaperon = 15◦, Non-reconfigurable
controller - Simulation.
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Figure 3.20: Altitude, Crossrange, Downrange - Right Flaperon = 15◦, Non-
reconfigurable controller - Simulation.

not suitable for a successful landing.
The idea behind this comparison is to show that improved performance

can be achieved by employing a reconfigurable inner-loop controller. It should
be noted that the X-40A baseline controller (non-reconfigurable) does not
have access to the bodyflap and speedbrake, hence, it has limited pitching
moment capabilities. Fortunately, these two surfaces do not provide and
rolling or yawing moments (so they cannot be used to counteract the effects
of the failed right flaperon). If the IAG&C reconfigurable inner-loop con-
troller did not have the additional bodyflap and speedbrake, similar accept-
able performance (similar to the 6 control surface vehicle with the IAG&C
controller) would still be observed. The left flaperon would move to 15◦ to
counter the failed right flaperon, but now the rudders would be required to
deflect more to produce the required pitching moments (since the bodyflap
and speedbrake produce some pitching moment). In effect, even though the
simulations compared the six vs. the four control effector vehicle, the results
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Figure 3.21: Altitude vs. Downrange - Right Flaperon = 15◦, Non-
reconfigurable controller - Simulation.
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Figure 3.22: Command and actual body-axis rates - Bodyflap = 5◦, IAG&C
controller - Simulation.

display the benefit of reconfigurable control.

3.1.3 Bodyflap Failure Results

Another failure case investigated is a locked bodyflap at 5◦. This type of
failure produces similar results to the right flaperon failed at 15◦. The IAG&C
controller is capable of recovering from this failure with minimal deviation
from nominal performance. Figures 3.22 - 3.28 show the plots from this
simulation run. Figures 3.29 and 3.30 display the flight test data for a flight
with a bodyflap failure at 5◦. Once again, the altitude trace is reasonable
and the flight actual and flight ideal body-axis rates are nearly equivalent.
Hence, the inner-loop is working as expected.
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Figure 3.23: Actual and ideal body-axis rates - Bodyflap = 5◦, IAG&C
controller - Simulation.
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Figure 3.24: Control Deflections - Bodyflap = 5◦, IAG&C controller - Simu-
lation.
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Figure 3.25: Control Deflections - Bodyflap = 5◦, IAG&C controller - Simu-
lation.
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Figure 3.26: Altitude, Crossrange, Downrange - Bodyflap = 5◦, IAG&C
controller - Simulation.
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Figure 3.27: Altitude vs. Downrange - Bodyflap = 5◦, IAG&C controller -
Simulation.
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Figure 3.28: Bandwidth - Bodyflap = 5◦, IAG&C controller - Simulation.
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Figure 3.29: Altitude vs. Downrange - Bodyflap = 5◦ - Flight Data.
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Figure 3.30: Actual and ideal body-axis rates - Bodyflap = 5◦ - Flight Data.
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3.1.4 Right & Left Ruddervators Failure Results

The last failure case discussed in this report is a combination of two failed
control surfaces. Here, both ruddervators are failed at 0◦. This is a severe
failure for this vehicle as the ruddervators are the most powerful control
effectors. Fortunately, there is sufficient control redundancy to recover most
of the nominal performance. The flaperons are available to control the roll
axis and to some extent the yaw axis, while the bodyflap and speedbrake are
used for pitch control.

Figures 3.31 and 3.32 show the body-axis rates for this failure. Once
again, performance is acceptable, however, note that there is some error in the
yaw axis. Shortly, the cause of this error will be shown. The control effector
deflections are shown in Figures 3.33 and 3.34. These figures show that the
ruddervators have been locked at 0◦ and they show that the deflections of
the bodyflap and speedbrake are larger than the unfailed case to account for
the loss of the ruddervators.

Figures 3.35 and 3.36 display the altitude, crossrange, and downrange.
Again, the reconfigurable controller is capable of recovering the vehicle with
only a slight deviation from nominal conditions. Figure 3.37 shows the band-
width of each axis as reported by the inner-loop reconfigurable controller. For
the first time, the bandwidth is not constant at its nominal value. In fact,
after the failure occurs (41 sec. into the run), the bandwidth of the yaw
axis is reduced which indicates that this axis has become saturated. This is
why the error is present in the yaw rate shown in Figure 3.31. When the
axis saturates, the inner-loop is essentially slowed by reducing the bandwidth
and this information is passed to the guidance loops. When guidance gain
adaptation is available, the reduced bandwidth from the inner-loop would
notify the guidance algorithm to adjust its gains so as to maintain stability.
The guidance adaptation algorithm is described in Volume 2.

In conclusion, the failure of both ruddervators at 0◦ is a failure from
which the reconfigurable controller can recover the majority of nominal per-
formance. Some axis saturation occurs, but it is not severe enough to cause
large deviations from the nominal flight path.

In terms of flight test data for this failure, Figures 3.38 and 3.39 display
the data. The altitude vs. downrange plot is similar to the simulated version
so it appears that the entire system is working properly. In terms of isolating
the inner-loop, from Figure 3.39, it can be seen that the flight actual and flight
ideal body-axis rates are quite close and hence the inner-loop is behaving like
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Figure 3.31: Command and actual body-axis rates - Right and Left Rudder-
vators = 0◦, IAG&C controller - Simulation.
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Figure 3.32: Actual and ideal body-axis rates - Right and Left Ruddervators
= 0◦, IAG&C controller - Simulation.
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Figure 3.33: Control Deflections - Right and Left Ruddervators = 0◦, IAG&C
controller - Simulation.
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Figure 3.34: Control Deflections - Right and Left Ruddervators = 0◦, IAG&C
controller - Simulation.
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Figure 3.35: Altitude, Crossrange, Downrange - Right and Left Ruddervators
= 0◦, IAG&C controller - Simulation.

a bank of decoupled first-order lag transfer functions.
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Figure 3.36: Altitude vs. Downrange - Right and Left Ruddervators = 0◦,
IAG&C controller - Simulation.
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Figure 3.37: Bandwidth - Right and Left Ruddervators = 0◦, IAG&C con-
troller - Simulation.
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Figure 3.38: Altitude vs. Downrange - Right and Left Ruddervators = 0◦ -
Flight Data.
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Figure 3.39: Actual and ideal body-axis rates - Right and Left Ruddervators
= 0◦ - Flight Data.
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Chapter 4

Conclusions

4.1

The inner-loop reconfigurable control system described in this volume was
designed to interact with the adaptive guidance and trajectory reshaping al-
gorithms described in Volume 2. Representative non-real-time and real-time
in-flight simulation results that focused on the performance of the inner-loop
flight control system were shown in this volume; however, a more compre-
hensive and general set of results are shown in Volume 3 of this report. The
results presented in this volume show that in some cases, a reconfigurable
control system can enable recovery from a control effector failure without
guidance adaptation or trajectory reshaping. It is also shown that there are
some failures that require all three elements of the IAG&C system in order to
recover the vehicle. Real-time operation of the inner-loop reconfigurable con-
trol system was successfully demonstrated on the Total In-flight Simulator
using a 233MHz Power PC. The linear programming based control allocator
was the most computationally intense element of the system; however, it was
capable of running well within the .02 sec (50Hz) update rate of the FCS. To
our knowledge, this is the first time that a linear programming based control
allocator has been flight demonstrated. The element of the inner-loop system
that consumed the most memory resources was the onboard aircraft model
that was used to store the stability and control data used by the dynamic
inversion control law and control allocator.

The inner-loop flight control system was exercised in 75 separate ap-
proaches and landings (most to virtual runways above ground level). The
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system demonstrated the ability to satisfactorily track the body axis rate
commands generated by the guidance system in all cases where sufficient
control power was available. The reference model bandwidth attenuation
algorithm was exercised on several flights and was typically triggered by sur-
face rate limits when the surfaces were responding to tracking errors caused
by gusts or turbulence. Due to cost and schedule constraints, some flights
were conducted under wind conditions that exceeded the placard wind limits
of the X-40A; however, the TIFS aircraft operated well within it’s placard
limits at all times.
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Appendix A

On Velocity Tracking

As mentioned in Volume 3, both the non-real-time Monte Carlo analysis
and TIFS simulation of the X-40A indicated that satisfactory sink rates,
touchdown points, terminal pitch attitudes, and touchdown velocities were
not achieved on each and every approach and landing. These cases were
generally associated with large wind perturbations and so it is expected that
performance may have been improved if a speed loop were implemented.
While a speed loop was not implemented in the flight demonstration, one
concept was explored early in the inner-loop design.

The closed loop concept that was explored was to close the velocity loop
by adding a fourth channel to the dynamic inversion based explicit model
following system. This involved subtracting the wing-body induced linear
acceleration (essentially -D/m) from the desired linear acceleration gener-
ated by an error compensating prefilter to form the input to a fourth channel
on the control allocator. The control allocator therefore had to find the ap-
propriate distribution of control effector deflections required to generate a
set of commanded body axis angular accelerations and forward (total linear
acceleration vector) linear acceleration. The angular acceleration error min-
imization problem posed in Equation 2.11 can be modified to include linear
acceleration as follows:

min
δ

JE = min
δ

Wv |Bvδ − dvdes|1 (A.1)

subject to
δ ≤ δ ≤ δ (A.2)
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where

Bv =

[
I−1 0
0 1/m

]
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(A.3)

and dvdes = [ṗdes q̇des ṙdes ẍdes]
T . Notice the inclusion of the weighting

vector Wv. Each element of the weighting vector is multiplied by the cor-
responding element of |Bvδ − dvdes|1. Clearly the top priority is to use the
control effectors to maintain control of the rotational degrees of freedom,
therefore the relative weighting on the linear acceleration error should al-
ways be much smaller than the weighting on the angular acceleration errors.
It was found that under nominal conditions, tight velocity tracking could
be achieved using this closed loop approach while maintaining good rota-
tional tracking performance. Under failure conditions; however, the velocity
tracking performance suffered.

Independent control of four degrees of freedom was difficult when one or
more control effectors failed. Furthermore, the control of linear acceleration
using control surfaces in an unpowered approach is problematic because of
the extremely limited ability of most surfaces (excluding the speedbrake) to
generate drag forces. Control surfaces can be used to correct for small linear
acceleration errors but large errors are better corrected by manipulating the
angle of attack of the wing-body. In short, the task of velocity error correction
may be split between the control surfaces and the wing-body; however, the
wing-body exerts the most influence and should be used if possible. Manip-
ulation of the wing-body angle of attack is an outer-loop guidance function,
while the generation of the reference flight path is a trajectory generation
function.

The system tested in the TIFS flights did not include a closed-inner loop
velocity tracking system. The original X-40A, which had only flaperons and
rudders, deployed the flaperons at 10◦ trailing edge down during the approach
and landing phase. The modified X-40A model that was simulated by the
TIFS aircraft had a speedbrake and bodyflap. The speedbrake deflection
in the control allocation preference vector was biased such that the drag
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produced by the speedbrake was equivalent to that generated by 10◦ trailing
edge down of symmetric flaperon deflection. The speedbrake preference was
modulated by a command that was proportional to the velocity error that
was calculated by the guidance system. This system is described in Volume
2 of this series of reports.

In summary, although it is mathematically possible to effect limited drag
control using only the control effectors, it is difficult to perform during failure
cases. Under nominal conditions, the method proposed here can be success-
fully applied to control a vehicle’s velocity. However, when control failures
occur, engineering decisions need to be made as to the relative importance of
velocity and attitude control. In other words, during a failure, it may not be
possible to independently control three body-axes and vehicle velocity. More
research on this type of approach to velocity control is warranted.
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